Consider the following electrochemical cell at \(298\,\text{K}\):
\[ \text{Pt} \, | \, \mathrm{HSnO_2^- (aq)} \, | \, \mathrm{Sn(OH)_6^{2-} (aq)} \, | \, \mathrm{OH^- (aq)} \, | \, \mathrm{Bi_2O_3 (s)} \, | \, \mathrm{Bi (s)} \] If the reaction quotient at a given time is \(10^6\), then the cell EMF (\(E_{\text{cell}}\)) is _________ \( \times 10^{-1} \) V (Nearest integer).
Given:
\[ E^\circ_{\mathrm{Bi_2O_3/Bi,OH^-}} = -0.44\ \text{V}, \quad E^\circ_{\mathrm{Sn(OH)_6^{2-}/HSnO_2^-,OH^-}} = -0.90\ \text{V} \]
To determine the cell EMF (\(E_{\text{cell}}\)) for the given electrochemical cell at \(298\,\text{K}\), we use the Nernst Equation:
\[E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{RT}{nF} \ln Q\]
where:
The given reaction quotient \(Q = 10^6\), and standard reduction potentials are:
The standard cell potential \(E^\circ_{\text{cell}}\) is calculated as:
\[E^\circ_{\text{cell}} = E^\circ_{\mathrm{cathode}} - E^\circ_{\mathrm{anode}} = -0.44\, \text{V} - (-0.90\, \text{V}) = 0.46\, \text{V}\]
The balanced overall redox reaction involves 2 electrons, so \(n = 2\). Substitute these values into the Nernst Equation:
\[E_{\text{cell}} = 0.46 - \frac{8.314 \times 298}{2 \times 96485} \ln(10^6)\]
Simplify the equation:
\[E_{\text{cell}} = 0.46 - \frac{0.0257}{2} \times 13.815\quad(\text{using } \ln(10^6) \approx 13.815)\]
\[E_{\text{cell}} = 0.46 - 0.1775 \approx 0.2825\, \text{V}\]
Convert into nearest integer times \(10^{-1}\):
\[E_{\text{cell}} \approx 28 \times 10^{-1} \, \text{V}\]