The cell is a concentration cell ($E_{\text{cell}}^o = 0$). We assume $n=z$.
The Nernst equation is: $E_{\text{cell}} = - \frac{0.059}{n} \log \frac{[M^{n+}]_{\text{anode}}}{[M^{n+}]_{\text{cathode}}}$.
For $E_{\text{cell}}$ to be positive, $\log \frac{[M^{n+}]_{\text{anode}}}{[M^{n+}]_{\text{cathode}}}$ must be negative.
This requires the ratio $\frac{[M^{n+}]_{\text{anode}}}{[M^{n+}]_{\text{cathode}}}<1$.
Thus, the condition for spontaneity is $C_{\text{anode}}<C_{\text{cathode}}$.
We analyze Option (D): $C_1$ is the cathode concentration ($C_C$), and $C_2$ is the anode concentration ($C_A$).
$C_1>C_2 \implies C_{\text{cathode}}>C_{\text{anode}}$.
This condition satisfies $C_{\text{anode}}<C_{\text{cathode}}$, making $E_{\text{cell}}$ positive.