Consider the following cell reaction: \[ {Mg} + {Cd}^{2+} \rightleftharpoons {Mg}^{2+} + {Cd} \] The standard Gibbs free energy change for the reaction is _________ kJ (rounded off to an integer). Given: Standard oxidation potentials for the reactions with respect to the standard hydrogen electrode are:
Mg \( \rightleftharpoons \) Mg\(^{2+}\) + 2e\(^-\) \( E^\circ = 2.37 \, {V} \) Cd \( \rightleftharpoons \) Cd\(^{2+}\) + 2e\(^-\) \( E^\circ = 0.403 \, {V} \) Faraday’s constant = 96500 C mol\(^{-1}\)
The excess molar Gibbs free energy of a solution of element A and B at 1000 K is given by \( G^{XS} = -3000 X_A X_B \) J mol\(^{-1}\), where \( X_A \) and \( X_B \) are mole fractions of A and B, respectively. The activity of B in a solution of A and B containing 40 mol% of B at 1000 K is ......... (rounded off to two decimal places). Given: Ideal gas constant \( R = 8.314 \, {J mol}^{-1} {K}^{-1} \)
Match the phenomena in Column I with the typical observations in Column II.
Radiative heat flux \( \dot{q} \) at a hot surface at a temperature \( T_s \) can be expressed as \[ \dot{q} = A f(T_s, T_\infty) (T_s - T_\infty) \] where \( A \) is a constant and \( T_\infty \) is the temperature of the surroundings (temperatures are expressed in K). The function \( f(T_s, T_\infty) \) is given by ______.
Match the steel plant related processes in Column I with the associated information in Column II.
Consider the phase diagram of a one-component system given below. \( V_{\alpha} \), \( V_{\beta} \), and \( V_{{Liquid}} \) are the molar volumes of \( \alpha \), \( \beta \), and liquid phases, respectively. Which one of the following statements is TRUE? Given: The change in molar enthalpies, \( \Delta H_{\alpha \to \beta} \) and \( \Delta H_{\beta \to {Liquid}} \), are positive.
For two continuous functions \( M(x, y) \) and \( N(x, y) \), the relation \( M dx + N dy = 0 \) describes an exact differential equation if