The correct answer is C:455
Given the arithmetic progression: 3,7,11,..., where \(A_n\) denotes the sum of the first n terms of this progression.
Common difference (d) between consecutive terms:7-3=4.
The nth term \((a_n)\) of an arithmetic progression:\(a_n=a_1+(n-1)\times{d}\).
Substitute values (\(a_1=3\), d = 4, n is term number):
\(a_n=3+(n-1)\times4\),
\(a_n=4n-1\).
Sum of the first n terms \((A_n)\) of an arithmetic progression:
\(A_n=\frac{n}{2}\times[2a_1+(n-1)d]\).
Substitute values and simplify:
\(A_n=\frac{n}{2}\times(2\times3+(n-1)\times4)\),
\(A_n=\frac{n}{2}\times(6+4n-4)\),
\(A_n=\frac{n}{2}\times(4n+2)\),
\(A_n = 2n^2 + n\).
Calculate the value of \(\frac{1}{25}∑^{25}_{n=1} A_n\):
\((\frac{1}{25})Σ^{25}_{n=1}(A_n)=(\frac{1}{25})\times(A_1 + A_2 + A_3 + ... + A_25)\).
Substitute expression for An into the sum:
\((\frac{1}{25}) \times (2 \times 1^2 + 1 + 2 \times 2^2 + 2 + 2\times3^2 + 3 + ... + 2\times25^2+25)\).
Simplify using sum of squares and sum of natural numbers formulas:
\((\frac{1}{25}) \times (2 \times \frac{(25 * (25 + 1) * (2 * 25 + 1))}{6}+\frac{(25\times (25 + 1))}{2})\).
Further simplification:
\(2 \times \frac{(25 \times 26 \times 51)}{6}+\frac{(25 \times 26)}{2}\),
\(2 \times 25 \times 13 \times 17 + 25 \times 13\),
\(25 \times 13 \times (2 \times 17 + 1)\),
\(25 \times 13 \times 35\).
Finally,the value of \((\frac{1}{25}) \times Σ^{25}_{n=1}(A_n)\) is \(13 \times 35 = 455\).
So, the answer is c. 455.