Step 1: Let the first term of the A.P. be \( a \) and the common difference be \( d \). The sum of the first three terms is given by: \[ S_3 = 3a + 3d = 54 \quad \Rightarrow \quad a + d = 18 \] Thus, \( a = 18 - d \).
Step 2: The sum of the first 20 terms is given by: \[ S_{20} = \frac{20}{2} \times (2a + 19d) \] Since the sum lies between 1600 and 1800, solve for \( a \) and \( d \) that satisfy this condition.
Step 3: After finding the values of \( a \) and \( d \), the 11th term is: \[ T_{11} = a + 10d \] Substitute the values to calculate the 11th term, which is 108. Thus, the correct answer is (4).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is