Step 1: Let the first term of the A.P. be \( a \) and the common difference be \( d \). The sum of the first three terms is given by: \[ S_3 = 3a + 3d = 54 \quad \Rightarrow \quad a + d = 18 \] Thus, \( a = 18 - d \).
Step 2: The sum of the first 20 terms is given by: \[ S_{20} = \frac{20}{2} \times (2a + 19d) \] Since the sum lies between 1600 and 1800, solve for \( a \) and \( d \) that satisfy this condition.
Step 3: After finding the values of \( a \) and \( d \), the 11th term is: \[ T_{11} = a + 10d \] Substitute the values to calculate the 11th term, which is 108. Thus, the correct answer is (4).
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 