Analyzing each vector identity:
(A) $\int_V \vec{\nabla} \cdot \vec{u},dV = \oint_S \vec{u} \cdot \hat{n},dS$
This is the Divergence Theorem (Gauss's theorem): $$\int_V (\vec{\nabla} \cdot \vec{u}),dV = \oint_S \vec{u} \cdot \hat{n},dS$$
TRUE
(B) $\int_V [\psi \nabla^2\phi - \phi \nabla^2\psi],dV = \oint_S \left[\psi\frac{\partial\phi}{\partial n} - \phi\frac{\partial\psi}{\partial n}\right]dS$
This is Green's second identity (also called Green's theorem):
Starting with the divergence theorem applied to $\vec{F} = \psi\vec{\nabla}\phi - \phi\vec{\nabla}\psi$:
$$\vec{\nabla} \cdot (\psi\vec{\nabla}\phi) = \psi\nabla^2\phi + \vec{\nabla}\psi \cdot \vec{\nabla}\phi$$
$$\vec{\nabla} \cdot (\phi\vec{\nabla}\psi) = \phi\nabla^2\psi + \vec{\nabla}\phi \cdot \vec{\nabla}\psi$$
Subtracting: $$\vec{\nabla} \cdot (\psi\vec{\nabla}\phi - \phi\vec{\nabla}\psi) = \psi\nabla^2\phi - \phi\nabla^2\psi$$
Applying divergence theorem: $$\int_V [\psi\nabla^2\phi - \phi\nabla^2\psi],dV = \oint_S (\psi\vec{\nabla}\phi - \phi\vec{\nabla}\psi) \cdot \hat{n},dS$$
Since $\frac{\partial\phi}{\partial n} = \vec{\nabla}\phi \cdot \hat{n}$:
$$= \oint_S \left[\psi\frac{\partial\phi}{\partial n} - \phi\frac{\partial\psi}{\partial n}\right]dS$$
TRUE
(C) $\int_V [\psi \nabla^2\phi - \phi \nabla^2\psi],dV = \oint_S \left[\psi\frac{\partial\phi}{\partial n} + \phi\frac{\partial\psi}{\partial n}\right]dS$
From the analysis in (B), the correct form has a minus sign, not a plus sign.
FALSE
(D) $\oint_C \vec{u} \cdot d\vec{l} = \iint_S (\vec{\nabla} \times \vec{u}) \cdot \hat{n},dS$
This is Stokes' theorem: $$\oint_C \vec{u} \cdot d\vec{l} = \iint_S (\vec{\nabla} \times \vec{u}) \cdot \hat{n},dS$$
where $C$ is the boundary of surface $S$.
TRUE
Answer: (A), (B), and (D) are correct

At a particular temperature T, Planck's energy density of black body radiation in terms of frequency is \(\rho_T(\nu) = 8 \times 10^{-18} \text{ J/m}^3 \text{ Hz}^{-1}\) at \(\nu = 3 \times 10^{14}\) Hz. Then Planck's energy density \(\rho_T(\lambda)\) at the corresponding wavelength (\(\lambda\)) has the value \rule{1cm}{0.15mm} \(\times 10^2 \text{ J/m}^4\). (in integer)
[Speed of light \(c = 3 \times 10^8\) m/s]
(Note: The unit for \(\rho_T(\nu)\) in the original problem was given as J/m³, which is dimensionally incorrect for a spectral density. The correct unit J/(m³·Hz) or J·s/m³ is used here for the solution.)