(A) \(\cos P = \frac{{q^2 + r^2 - p^2}}{{2qr}}\)
And \(\frac{{q^2 + r^2}}{2} \geq \sqrt{q^2 \cdot r^2} \quad \text{(AM} \geq \text{GM)}\)
\(⇒\) \(q^2 + r^2 \geq 2qr\)
So \(\cos P \geq \frac{{2qr - p^2}}{{2qr}}\)
\(\cos P \geq 1 - \frac{{p^2}}{{2qr}}\)
(B) \(\frac{{(q-r) \cos P + (p-r) \cos Q}}{{p+q}} = \frac{{(q \cos P + p \cos Q) - r(\cos P + \cos Q)}}{{p+q}}\)
=\(\frac{r(1 - \cos P - \cos Q)}{p+q}\)
=\(\frac{{r(q-p \cos R) - (p-q \cos R)}}{{p+q}}\)
= \(\frac{{(r-p-q) + (p+q)\cos R}}{{p+q}}\)
= \(\cos R + \frac{{r-q-p}}{{p+q}} \leq \cos R\)
(C) \(\frac{{q+r}}{p} = \frac{{\sin Q + \sin R}}{{\sin P}} \geq 2\sqrt{\frac{{\sin Q \sin R}}{{\sin P}}}\)
(D) If \(p < q \quad \text{and} \quad q < r\)
So, p is the smallest side, therefore one of Q or R can be obtuse
So, one of cos Q or cos R can be negative
Therefore, \(\cos Q > \frac{p}{r} \quad \text{and} \quad \cos R > \frac{p}{q} \text{ cannot hold always.}\)
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____
Height of tower AB is 30 m where B is foot of tower. Angle of elevation from a point C on level ground to top of tower is 60° and angle of elevation of A from a point D x m above C is 15° then find the area of quadrilateral ABCD.
A positive, singly ionized atom of mass number $ A_M $ is accelerated from rest by the voltage $ 192 \, \text{V} $. Thereafter, it enters a rectangular region of width $ w $ with magnetic field $ \vec{B}_0 = 0.1\hat{k} \, \text{T} $. The ion finally hits a detector at the distance $ x $ below its starting trajectory. Which of the following option(s) is(are) correct?
$ \text{(Given: Mass of neutron/proton = } \frac{5}{3} \times 10^{-27} \, \text{kg, charge of the electron = } 1.6 \times 10^{-19} \, \text{C).} $