We are given the equation for energy \(E\):
\[
E = \frac{hc}{\lambda_p} \quad \Rightarrow \quad \lambda_p = \frac{hc}{E}
\]
Now, using the relation \(\lambda_n = \frac{h}{p}\), where \(p\) is the momentum, we can substitute the expression for \(p\):
\[
\lambda_n = \frac{h}{p} = \frac{h}{\sqrt{2mE}}
\]
Now, substituting the expression for \(p\):
\[
\frac{\lambda_n}{\lambda_p} = \frac{\frac{h}{\sqrt{2mE}}}{\frac{h}{Ehc}} = \frac{E}{\sqrt{2mc^2}}
\]
Thus, we get the expression:
\[
\frac{\lambda_n}{\lambda_p} = \sqrt{\frac{E}{2mc^2}}
\]
This gives us the desired expression for \(\frac{\lambda_n}{\lambda_p}\).