Consider a monatomic chain of length 30 cm. The phonon density of states is \( 1.2 \times 10^{-4} \) s. Assuming the Debye model, the velocity of sound in m/s (rounded off to one decimal place) is
Powder X-ray diffraction pattern of a cubic solid with lattice constant \( a \) has the (111) diffraction peak at \( \theta = 30^\circ \). If the lattice expands such that the lattice constant becomes \( 1.25a \), the angle (in degrees) corresponding to the (111) peak changes to \( \sin^{-1} \left( \frac{1}{n} \right) \). The value of \( n \) (rounded off to one decimal place) is _________
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is: