

An investment company, Win Lose, recruit's employees to trade in the share market. For newcomers, they have a one-year probation period. During this period, the employees are given Rs. 1 lakh per month to invest the way they see fit. They are evaluated at the end of every month, using the following criteria:
1. If the total loss in any span of three consecutive months exceeds Rs. 20,000, their services are terminated at the end of that 3-month period,
2. If the total loss in any span of six consecutive months exceeds Rs. 10,000, their services are terminated at the end of that 6-month period.
Further, at the end of the 12-month probation period, if there are losses on their overall investment, their services are terminated.
Ratan, Shri, Tamal and Upanshu started working for Win Lose in January. Ratan was terminated after 4 months, Shri was terminated after 7 months, Tamal was terminated after 10 months, while Upanshu was not terminated even after 12 months. The table below, partially, lists their monthly profits (in Rs. ‘000’) over the 12-month period, where x, y and z are masked information.
Note:
• A negative profit value indicates a loss.
• The value in any cell is an integer.
Illustration: As Upanshu is continuing after March, that means his total profit during January-March (2z +2z +0) ≥
Rs.20,000. Similarly, as he is continuing after June, his total profit during January − June ≥
Rs.10,000, as well as his total profit during April-June ≥ Rs.10,000.
Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]
Choose the transfer function that best fits the output response to a unit step input change shown in the figure:

An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
The first-order irreversible liquid phase reaction \(A \to B\) occurs inside a constant volume \(V\) isothermal CSTR with the initial steady-state conditions shown in the figure. The gain, in kmol/m³·h, of the transfer function relating the reactor effluent \(A\) concentration \(c_A\) to the inlet flow rate \(F\) is:
