Given:
\[
A \xrightarrow{k} B
\]
\[
- r_{A_1} = 0.2 \, \text{mol/m}^3 \cdot \text{sec at } C_{A_1},
\]
\[
k = 0.1 \, \text{m}^3/\text{mol} \cdot \text{sec}, \quad \text{find } r_{A_2} \text{ at } 10C_{A_1}.
\]
Step 1: Determining the reaction order.
From the rate constant unit, we can deduce the reaction order:
\[
k \, \text{unit} = \left( \frac{\text{mol}}{\text{lit}} \right)^{1-n} \text{sec}^{-1}.
\]
For \( k = 0.1 \, \text{m}^3/\text{mol} \cdot \text{sec} \):
\[
1 - n = -1, \quad n = 2.
\]
Step 2: Rate equation for the reaction.
\[
- r_{A_1} = 0.1 C_{A_1}^2.
\]
Step 3: Calculating \( r_{A_2} \).
\[
\frac{-r_{A_2}}{-r_{A_1}} = \frac{0.1 C_{A_2}^2}{0.1 C_{A_1}^2} \quad \text{(since \( k \) remains constant as the temperature remains constant)}.
\]
\[
C_{A_2} = 10C_{A_1}.
\]
\[
\frac{-r_{A_2}}{0.2} = \left(\frac{10C_{A_1}}{C_{A_1}}\right)^2.
\]
\[
- r_{A_2} = 20 \, \text{mol/m}^3 \cdot \text{sec}.
\]
Final Answer:
\[
- r_{A_2} = 20 \, \text{mol/m}^3 \cdot \text{sec}.
\]