Observe the following data given in the table. (\(K_H\) = Henry's law constant)
Gas | CO₂ | Ar | HCHO | CH₄ |
---|---|---|---|---|
\(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.
The work and kinetic energy principle (also known as the work-energy theorem) asserts that the work done by all forces acting on a particle equals the change in the particle's kinetic energy. By defining the work of the torque and rotational kinetic energy, this definition can be extended to rigid bodies.
The change in kinetic energy KE is equal to the work W done by the net force on a particle is given by,
W = ΔKE = ½ mv2f − ½ mv2i
Where,
vi → Speeds of the particle before the application of force
vf → Speeds of the particle after the application of force
m → Particle’s mass
Note: Energy and Momentum are related by, E = p2 / 2m.