Given: - Wavelength of light, \( \lambda = 660 \, \text{nm} = 660 \times 10^{-9} \, \text{m} \) - Planck's constant, \( h = 6.6 \times 10^{-34} \, \text{Js} \) - Charge of an electron, \( e = 1.6 \times 10^{-19} \, \text{C} \)
The energy \( E \) of a photon is given by:
\[ E = \frac{hc}{\lambda} \]
where \( c \) is the speed of light, \( c = 3 \times 10^8 \, \text{m/s} \). Substituting the given values:
\[ E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{660 \times 10^{-9}} \, \text{J} \]
Simplifying:
\[ E = \frac{19.8 \times 10^{-26}}{660 \times 10^{-9}} \, \text{J} \] \[ E = 3 \times 10^{-19} \, \text{J} \]
To convert the energy from joules to electron volts (eV), we use:
\[ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \]
Thus:
\[ E = \frac{3 \times 10^{-19}}{1.6 \times 10^{-19}} \, \text{eV} \] \[ E = 1.875 \, \text{eV} \]
Given that the band gap of the photodiode is \( \frac{X}{8} \, \text{eV} \):
\[ \frac{X}{8} = 1.875 \]
Solving for \( X \):
\[ X = 1.875 \times 8 \] \[ X = 15 \]
The value of \( X \) is 15.
The graph shows the variation of current with voltage for a p-n junction diode. Estimate the dynamic resistance of the diode at \( V = -0.6 \) V.
Assertion : In a semiconductor diode, the thickness of the depletion layer is not fixed.
Reason (R): Thickness of depletion layer in a semiconductor device depends upon many factors such as biasing of the semiconductor.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).