Given: - Wavelength of light, \( \lambda = 660 \, \text{nm} = 660 \times 10^{-9} \, \text{m} \) - Planck's constant, \( h = 6.6 \times 10^{-34} \, \text{Js} \) - Charge of an electron, \( e = 1.6 \times 10^{-19} \, \text{C} \)
The energy \( E \) of a photon is given by:
\[ E = \frac{hc}{\lambda} \]
where \( c \) is the speed of light, \( c = 3 \times 10^8 \, \text{m/s} \). Substituting the given values:
\[ E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{660 \times 10^{-9}} \, \text{J} \]
Simplifying:
\[ E = \frac{19.8 \times 10^{-26}}{660 \times 10^{-9}} \, \text{J} \] \[ E = 3 \times 10^{-19} \, \text{J} \]
To convert the energy from joules to electron volts (eV), we use:
\[ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \]
Thus:
\[ E = \frac{3 \times 10^{-19}}{1.6 \times 10^{-19}} \, \text{eV} \] \[ E = 1.875 \, \text{eV} \]
Given that the band gap of the photodiode is \( \frac{X}{8} \, \text{eV} \):
\[ \frac{X}{8} = 1.875 \]
Solving for \( X \):
\[ X = 1.875 \times 8 \] \[ X = 15 \]
The value of \( X \) is 15.
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: