Given: - Wavelength of light, \( \lambda = 660 \, \text{nm} = 660 \times 10^{-9} \, \text{m} \) - Planck's constant, \( h = 6.6 \times 10^{-34} \, \text{Js} \) - Charge of an electron, \( e = 1.6 \times 10^{-19} \, \text{C} \)
The energy \( E \) of a photon is given by:
\[ E = \frac{hc}{\lambda} \]
where \( c \) is the speed of light, \( c = 3 \times 10^8 \, \text{m/s} \). Substituting the given values:
\[ E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{660 \times 10^{-9}} \, \text{J} \]
Simplifying:
\[ E = \frac{19.8 \times 10^{-26}}{660 \times 10^{-9}} \, \text{J} \] \[ E = 3 \times 10^{-19} \, \text{J} \]
To convert the energy from joules to electron volts (eV), we use:
\[ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \]
Thus:
\[ E = \frac{3 \times 10^{-19}}{1.6 \times 10^{-19}} \, \text{eV} \] \[ E = 1.875 \, \text{eV} \]
Given that the band gap of the photodiode is \( \frac{X}{8} \, \text{eV} \):
\[ \frac{X}{8} = 1.875 \]
Solving for \( X \):
\[ X = 1.875 \times 8 \] \[ X = 15 \]
The value of \( X \) is 15.