Step 1: Molar conductivity (\(\Lambda_m\)) is given by:
\[
\Lambda_m = \frac{\kappa \times 1000}{C}
\]
where
\(\kappa = 7.896 \times 10^{-5}\) S cm\(^{-1}\)
\(C = 0.00241\) M
Step 2: Substitute the values:
\[
\Lambda_m = \frac{7.896 \times 10^{-5} \times 1000}{0.00241}
\]
\[
\Lambda_m \approx 32.76 \ \text{S cm}^2 \text{ mol}^{-1}
\]
Step 3: Degree of dissociation (\(\alpha\)) is given by:
\[
\alpha = \frac{\Lambda_m}{\Lambda^{\circ}}
\]
Step 4: Substitute the values:
\[
\alpha = \frac{32.76}{390.5}
\]
\[
\alpha \approx 0.084
\]
Step 5: Therefore, the degree of dissociation is approximately:
\[
\alpha = 8.4%
\]