Complete the following table using the given information:
\[ \begin{array}{|c|c|c|c|} \hline \textbf{Sr. No.} & \textbf{FV (₹)} & \textbf{Share is at} & \textbf{MV (₹)} \\ \hline 1 & 100 & \text{Par} & \boxed{100} \\ \hline 2 & \boxed{75} & \text{Premium ₹500} & 575 \\ \hline 3 & 10 & \boxed{\text{Discount ₹5}} & 5 \\ \hline 4 & 200 & \text{Discount ₹50} & \boxed{150} \\ \hline \end{array} \]
Step 1: Recall the relationship between FV, MV, and type of share.
- If a share is at par, then \( \text{MV} = \text{FV} \).
- If a share is at a premium, then \( \text{MV} = \text{FV} + \text{premium} \).
- If a share is at a discount, then \( \text{MV} = \text{FV} - \text{discount} \).
Step 2: Apply the given information.
\[ \begin{aligned} \text{(1) Par value:} & \quad \text{MV} = \text{FV} = 100 \\ \text{(2) Premium ₹500, MV = 575:} & \quad \text{FV} = 575 - 500 = 75 \\ \text{(3) FV = 10, MV = 5:} & \quad \text{Discount} = 10 - 5 = 5 \\ \text{(4) FV = 200, Discount ₹50:} & \quad \text{MV} = 200 - 50 = 150 \end{aligned} \] Step 3: Conclusion.
\[ \begin{array}{|c|c|c|c|} \hline \text{Sr. No.} & \text{FV} & \text{Share is at} & \text{MV} \\ \hline 1 & 100 & \text{Par} & 100 \\ \hline 2 & 75 & \text{Premium } 500 & 575 \\ \hline 3 & 10 & \text{Discount } 5 & 5 \\ \hline 4 & 200 & \text{Discount } 50 & 150 \\ \hline \end{array} \] Final Answers: \[ \boxed{\text{(1) 100, \quad (2) 75, \quad (3) Discount ₹5, \quad (4) 150}} \]
10 रुपये दरणी किंमतीचे 50 शेर आणि 25 रुपये बाजारभावाने विकत घेतले. त्यावर कंपनीने 30% लाभांश घातला, तर : गुंतवणूकवर प्राप्त परतावा दर काय?
10 रुपये दरणी किंमतीचे 50 शेर आणि 25 रुपये बाजारभावाने विकत घेतले. त्यावर कंपनीने 30% लाभांश घातला, तर : मिळालेला लाभांश किती?
10 रुपये दरणी किंमतीचे 50 शेर आणि 25 रुपये बाजारभावाने विकत घेतले. त्यावर कंपनीने 30% लाभांश घातला, तर : एकूण गुंतवणूक किंमत किती?
100 रुपये दाराची किंमत 150 रुपये आहे. जर द्रवाचा दर 2% असला, तर एका शेराची द्रव्याची रक्कम काय होईल?
In the following figure \(\triangle\) ABC, B-D-C and BD = 7, BC = 20, then find \(\frac{A(\triangle ABD)}{A(\triangle ABC)}\). 
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\)) 
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.