Co2+ is easily oxidized to Co3+ in the presence of a strong ligand (At. No. of Co = 27).
The complex \([\text{Co(NH}_3)_6][\text{Cr(CN)}_6]\) exhibits ionization isomerism
In ionization isomerism, two different compounds have the same molecular formula but differ in the way the ions are arranged. One of the isomers will have the ion \([\text{Cr(CN)}_6]^{3-}\) as the anion, while the other will have the ion \([\text{Co(NH}_3)_6]^{3+}\) as the anion.
The difference in the arrangement of ions leads to the formation of different ions in solution, which are responsible for the isomerism.
Assertion (A): [Cr(H_2O)_6]Cl_2 and [Fe(H_2O)_6]Cl_2 are examples of homoleptic complexes. Reason (R): All the ligands attached to the metal are the same.
Low spin tetrahedral complexes are not known.
Why is a solution of \(\text{Ni(H}_2\text{O})_6^{2+}\) green while a solution of \(\text{Ni(CN)}_4^{2-}\) is colourless? (At. No. of Ni = 28)
The color of a coordination complex depends on the d–d transitions in the visible region of the spectrum, which are influenced by the ligand field strength.
- In \(\text{Ni(H}_2\text{O})_6^{2+}\), Ni\(^{2+}\) has an electronic configuration of \([Ar]3d^8\). Water (\(\text{H}_2\text{O}\)) is a weak field ligand, causing a small crystal field splitting (\(\Delta\)), allowing d–d transitions in the visible region, which results in a green color.
- In \(\text{Ni(CN)}_4^{2-}\), cyanide (\(\text{CN}^-\)) is a strong field ligand,
(a) State the following:
(i) Kohlrausch law of independent migration of ions
A solution of glucose (molar mass = 180 g mol\(^{-1}\)) in water has a boiling point of 100.20°C. Calculate the freezing point of the same solution. Molal constants for water \(K_f\) and \(K_b\) are 1.86 K kg mol\(^{-1}\) and 0.512 K kg mol\(^{-1}\) respectively.
Write the reactions involved when D-glucose is treated with the following reagents: (a) HCN (b) Br\(_2\) water
Identify A and B in each of the following reaction sequence:
(a) \[ CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B \]
(b) \[ C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A \xrightarrow{C_6H_5NH_2} B \]
Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.