Distance between A and B = 3000 km. Wind speed = 50 km/h from east to west.
Let cruising speed of the plane = \( v \) km/h.
From B to A: effective speed = \( v + 50 \), travel time in actual hours = \( \frac{3000}{v+50} \).
From A to B: effective speed = \( v - 50 \), travel time in actual hours = \( \frac{3000}{v-50} \).
From schedule:
B to A: Dep 8:00 am (B local), Arr 3:00 pm (A local) → elapsed local time = 7 hours.
A to B: Dep 4:00 pm (A local), Arr 8:00 pm (B local) → elapsed local time = 4 hours.
Let time difference (A ahead of B) = \( t \) hours.
Travel B→A: Actual travel time = \( 7 - t \) hours.
Travel A→B: Actual travel time = \( 4 + t \) hours.
Equations:
\[
\frac{3000}{v+50} = 7 - t,
\]
\[
\frac{3000}{v-50} = 4 + t.
\]
Solving: from first, \( v+50 = \frac{3000}{7-t} \), from second, \( v-50 = \frac{3000}{4+t} \). Subtract:
\[
100 = 3000\left( \frac{1}{7-t} - \frac{1}{4+t} \right),
\]
\[
\frac{1}{7-t} - \frac{1}{4+t} = \frac{1}{30}.
\]
Simplify:
\[
\frac{(4+t)-(7-t)}{(7-t)(4+t)} = \frac{-3+2t}{(7-t)(4+t)} = \frac{1}{30}.
\]
So:
\[
-3 + 2t = \frac{(7-t)(4+t)}{30}.
\]
Multiply:
\[
-90 + 60t = 28 + 3t - t^2.
\]
Rearrange:
\[
t^2 + 57t - 118 = 0.
\]
Solving, positive root: \( t = 2 \) hours.