>
Exams
>
Mathematics
>
Limit and Continuity
>
choose the most appropriate option lim x to 1 sin
Question:
Choose the most appropriate option.
\[ \lim_{x \to 1} \sin(x - 1) \cdot \tan\left( \frac{\pi}{x} \right) \]
Show Hint
When a term tends to 0 and the other is finite, the product tends to 0.
IPU CET - 2017
IPU CET
Updated On:
Dec 11, 2025
0
\( \frac{1}{\pi} \)
\( \frac{2}{\pi} \)
\( -\frac{3}{\pi} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
As \( x \to 1 \), the term \( \sin(x - 1) \to 0 \) and \( \tan\left( \frac{\pi}{x} \right) \) is finite, so the product of these two terms tends to 0: \[ \lim_{x \to 1} \sin(x - 1) \cdot \tan\left( \frac{\pi}{x} \right) = 0 \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limit and Continuity
The value of the limit as $x$ approaches $0$ for $\frac{\sin(5x)
{x}$ is}
IPU CET - 2025
Mathematics
Limit and Continuity
View Solution
If $f(x) = 3x - b$, $x>1$ ; $f(x) = 11$, $x = 1$ ; $f(x) = -3x - 2b$, $x<1$ is continuous at $x = 1$, then the values of $a$ and $b$ are :
CBSE CLASS XII - 2025
Mathematics
Limit and Continuity
View Solution
If \( f(x) = \begin{cases} \frac{\sin^2 ax}{x^2}, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases} \) is continuous at \( x = 0 \), then the value of 'a' is :
CBSE CLASS XII - 2025
Mathematics
Limit and Continuity
View Solution
Let \( f, g : \mathbb{R} \to \mathbb{R} \) be two functions defined by \[ f(x) = \begin{cases} x |x| \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] and \[ g(x) = \begin{cases} x^2 \sin \frac{1}{x} + x \cos \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] Then, which one of the following is TRUE?
IIT JAM MA - 2025
Mathematics
Limit and Continuity
View Solution
If \( f(x) = \begin{cases} -2 & \text{if } x \le -1 \\ 2x & \text{if } -1 < x \le 1 \\ 2 & \text{if } x > 1 \end{cases} \), then test the continuity of the function at \( x = -1 \) and at \( x = 1 \).
UP Board XII - 2025
Mathematics
Limit and Continuity
View Solution
View More Questions
Questions Asked in IPU CET exam
The value of $\sin 20^\circ \times \sin 40^\circ \times \sin 60^\circ \times \sin 80^\circ$ is
IPU CET - 2025
Trigonometry
View Solution
The derivative of $e^{2x}\sin x$ with respect to $x$ is
IPU CET - 2025
Differentiation
View Solution
If vector $\vec{a} = 2\hat{i} + m\hat{j} + \hat{k}$ and vector $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other, then the value of $m$ is
IPU CET - 2025
Vectors
View Solution
Synonym of ``Brief'' is
IPU CET - 2025
Synonyms
View Solution
Spot the error: ``I prefer coffee than tea.''
IPU CET - 2025
Vocabulary
View Solution
View More Questions