\[ \lim_{x \to 0} \frac{\ln \cos 2x}{\sin 2x} \]
Step 1: Direct Substitution
First, substitute \( x = 0 \):
\[ \ln \cos 2x \to \ln 1 = 0 \quad \text{and} \quad \sin 2x \to 0 \]
This gives the indeterminate form \(\frac{0}{0}\), so we apply L'Hôpital's Rule.
Step 2: Apply L'Hôpital's Rule
Differentiate the numerator and denominator with respect to \( x \):
\[ \text{Numerator: } \frac{d}{dx} [\ln \cos 2x] = \frac{1}{\cos 2x} \cdot (-\sin 2x) \cdot 2 = -2 \tan 2x \]
\[ \text{Denominator: } \frac{d}{dx} [\sin 2x] = 2 \cos 2x \]
The limit becomes:
\[ \lim_{x \to 0} \frac{-2 \tan 2x}{2 \cos 2x} = \lim_{x \to 0} \frac{-\tan 2x}{\cos 2x} \]
Step 3: Evaluate the Simplified Limit
Substitute \( x = 0 \):
\[ \tan 2x \to 0 \quad \text{and} \quad \cos 2x \to 1 \]
Thus:
\[ \lim_{x \to 0} \frac{-\tan 2x}{\cos 2x} = \frac{-0}{1} = 0 \]
Which of the following is an octal number equal to decimal number \((896)_{10}\)?
The additional 8% human genome sequenced account for ........ million new letters added to the existing sequenced DNA.