Choose the correct answer.
If x,y,z are nonzero real numbers,then the inverse of matrix
A=\(\begin{bmatrix}x& 0& 0\\ 0& y& 0\\0&0& z\end{bmatrix}\)is
\(\begin{bmatrix}x^{-1}& 0& 0\\ 0& y^{-}1& 0\\0&0& z^{-1}\end{bmatrix}\)
xyz\(\begin{bmatrix}x^{-1}& 0& 0\\ 0& y^{-}1& 0\\0&0& z^{-1}\end{bmatrix}\)
\(\frac{1}{xyz}\begin{bmatrix}x& 0& 0\\ 0& y& 0\\0&0& z\end{bmatrix}\)
\(\frac{1}{xyz}\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\0&0& 1\end{bmatrix}\)
A=\(\begin{bmatrix}x& 0& 0\\ 0& y& 0\\0&0& z\end{bmatrix}\)
\(∴|A|=x(yz-0)=xyz≠0\)
Now,
\(A_{11}=yz,A_{12}=0,A_{13}=0\)
\(A_{21}=0,A_{22}=xz,A_{23}=0\)
\(A_{31}=0,A_{32}=0,A_{33}=xy\)
\(∴adjA\)=\(\begin{bmatrix}yz& 0& 0\\ 0& xz& 0\\0&0& xy\end{bmatrix}\)
\(∴A^{-1}\)=\(\frac{1}{|A|}\)\(adjA\)
=\(\frac{1}{xyz}\begin{bmatrix}yz& 0& 0\\ 0& xz& 0\\0&0& xy\end{bmatrix}\)
=\(\begin{bmatrix}\frac{yz}{xyz}& 0& 0\\ 0& \frac{xz}{xyz}& 0\\0&0& \frac{xy}{xyz}\end{bmatrix}\)
=\(\begin{bmatrix}\frac{1}{x}& 0& 0\\ 0& \frac{1}{y}& 0\\0&0& \frac{1}{z}\end{bmatrix}\)
=\(\begin{bmatrix}x^{-1}& 0& 0\\ 0& y^{-1}& 0\\0&0& z^{-1}\end{bmatrix}\)
The correct answer is A.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: