Choose the correct answer.
If x,y,z are nonzero real numbers,then the inverse of matrix
A=\(\begin{bmatrix}x& 0& 0\\ 0& y& 0\\0&0& z\end{bmatrix}\)is
\(\begin{bmatrix}x^{-1}& 0& 0\\ 0& y^{-}1& 0\\0&0& z^{-1}\end{bmatrix}\)
xyz\(\begin{bmatrix}x^{-1}& 0& 0\\ 0& y^{-}1& 0\\0&0& z^{-1}\end{bmatrix}\)
\(\frac{1}{xyz}\begin{bmatrix}x& 0& 0\\ 0& y& 0\\0&0& z\end{bmatrix}\)
\(\frac{1}{xyz}\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\0&0& 1\end{bmatrix}\)
A=\(\begin{bmatrix}x& 0& 0\\ 0& y& 0\\0&0& z\end{bmatrix}\)
\(∴|A|=x(yz-0)=xyz≠0\)
Now,
\(A_{11}=yz,A_{12}=0,A_{13}=0\)
\(A_{21}=0,A_{22}=xz,A_{23}=0\)
\(A_{31}=0,A_{32}=0,A_{33}=xy\)
\(∴adjA\)=\(\begin{bmatrix}yz& 0& 0\\ 0& xz& 0\\0&0& xy\end{bmatrix}\)
\(∴A^{-1}\)=\(\frac{1}{|A|}\)\(adjA\)
=\(\frac{1}{xyz}\begin{bmatrix}yz& 0& 0\\ 0& xz& 0\\0&0& xy\end{bmatrix}\)
=\(\begin{bmatrix}\frac{yz}{xyz}& 0& 0\\ 0& \frac{xz}{xyz}& 0\\0&0& \frac{xy}{xyz}\end{bmatrix}\)
=\(\begin{bmatrix}\frac{1}{x}& 0& 0\\ 0& \frac{1}{y}& 0\\0&0& \frac{1}{z}\end{bmatrix}\)
=\(\begin{bmatrix}x^{-1}& 0& 0\\ 0& y^{-1}& 0\\0&0& z^{-1}\end{bmatrix}\)
The correct answer is A.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4 : 3. Their Balance Sheet as at 31st March, 2024 was as follows:
On 1st April, 2024, Diya was admitted in the firm for \( \frac{1}{7} \)th share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.