The function \( f(x) = x^2 |x| \) can be written as: \[ f(x) = \begin{cases} x^3 & \text{if } x \geq 0, \\ -x^3 & \text{if } x < 0. \end{cases} \]
To check differentiability at \( x = 0 \), we compute the left-hand derivative (LHD) and the right-hand derivative (RHD).
1. Right-hand derivative (RHD): \[ f'(x) = \frac{d}{dx}(x^3) = 3x^2 \quad \text{for } x \geq 0. \] At \( x = 0 \), RHD: \[ f'_+(0) = 3(0)^2 = 0. \]
2. Left-hand derivative (LHD): \[ f'(x) = \frac{d}{dx}(-x^3) = -3x^2 \quad \text{for } x < 0. \] At \( x = 0 \), LHD: \[ f'_-(0) = -3(0)^2 = 0. \]
Since \( f'_+(0) = f'_-(0) = 0 \), the derivative exists and is continuous. Therefore, \( f(x) \) is differentiable at \( x = 0 \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is: