Check the injectivity and surjectivity of the following functions:
(i) f: N \(\to\) N is given by,
f(x) = x2
It is seen that for x, y ∈ N, f(x) = f(y) ⇒ x2 = y2 ⇒ x = y.
∴f is injective.
Now, 2 ∈ N. But, there does not exist any x in N such that f(x) = x2 = 2.
∴ f is not surjective.
Hence, function f is injective but not surjective.
(ii) f: Z \(\to\) Z is given by,
f(x) = x2
It is seen that f(−1) = f(1) = 1, but −1 ≠ 1.
∴ f is not injective.
Now,−2 ∈ Z. But, there does not exist any element x ∈ Z such that f(x) = x2 = −2.
∴ f is not surjective.
Hence, function f is neither injective nor surjective.
(iii) f: R \(\to\) R is given by,
f(x) = x2
It is seen that f(−1) = f(1) = 1, but −1 ≠ 1.
∴ f is not injective.
Now,−2 ∈ R. But, there does not exist any element x ∈ R such that f(x) = x2 = −2.
∴ f is not surjective.
Hence, function f is neither injective nor surjective.
(iv) f: N \(\to\) N given by,
f(x) = x3
It is seen that for x, y ∈ N, f(x) = f(y) ⇒ x3 = y3 ⇒ x = y.
∴f is injective.
Now, 2 ∈ N. But, there does not exist any element x in domain N such that f(x) = x3 = 2.
∴ f is not surjective
Hence, function f is injective but not surjective.
(v) f : Z \(\)\(\to\) Z is given by,
f(x) = x3
It is seen that for x, y ∈ Z, f(x) = f(y) ⇒ x3 = y3 ⇒ x = y.
∴ f is injective.
Now, 2 ∈ Z. But, there does not exist any element x in domain Z such that f(x) = x3 = 2.
∴ f is not surjective.
Hence, function f is injective but not surjective.
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
A function is said to be one to one function when f: A → B is One to One if for each element of A there is a distinct element of B.
A function which maps two or more elements of A to the same element of set B is said to be many to one function. Two or more elements of A have the same image in B.
If there exists a function for which every element of set B there is (are) pre-image(s) in set A, it is Onto Function.
A function, f is One – One and Onto or Bijective if the function f is both One to One and Onto function.
Read More: Types of Functions