Step 1: Determine oxidation state of Mn in both complexes:
In both cases:
\[ \text{Let oxidation state of Mn = } x \Rightarrow x + 6(-1) = -3 \Rightarrow x = +3 \] So, we are dealing with \( \mathrm{Mn^{3+}} \) which has atomic number 25.
Electronic configuration:
\[ \mathrm{Mn^{3+}}: [\mathrm{Ar}]\,3d^4 \]
Complex 1: \( [\mathrm{MnCl}_6]^{3-} \)
- \( \mathrm{Cl^-} \) is a weak field ligand → High spin complex.
- For high-spin \( d^4 \): number of unpaired electrons = 4
\[ \mu = \sqrt{n(n+2)} = \sqrt{4(4+2)} = \sqrt{24} \approx 4.90 \, \text{B.M.} \]
Complex 2: \( [\mathrm{Mn(CN)}_6]^{3-} \)
- \( \mathrm{CN^-} \) is a strong field ligand → Low spin complex.
- For low-spin \( d^4 \), electrons pair in lower \( t_{2g} \) orbitals → 2 unpaired electrons
\[ \mu = \sqrt{2(2+2)} = \sqrt{8} \approx 2.83 \, \text{B.M.} \]
Step 2: Total magnetic moment:
\[ \mu_{\text{total}} = 4.90 + 2.83 = 7.73 \, \text{B.M.} \approx \boxed{7.94 \, \text{B.M.}} \]
Given below are two statements regarding conformations of n-butane. Choose the correct option. 
Consider a weak base \(B\) of \(pK_b = 5.699\). \(x\) mL of \(0.02\) M HCl and \(y\) mL of \(0.02\) M weak base \(B\) are mixed to make \(100\) mL of a buffer of pH \(=9\) at \(25^\circ\text{C}\). The values of \(x\) and \(y\) respectively are
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?