We can use the formula for freezing point depression:
\[
\Delta T_f = i \times K_f \times m
\]
Where:
- \( \Delta T_f = 2 \, \text{K} \),
- \( K_f = 1.86 \, \text{K kg mol}^{-1} \) (given),
- \( i = 3 \) (for CaCl$_2$ as it dissociates into 3 ions: Ca$^{2+}$ and 2 Cl$^{-}$),
- \( m \) is the molality of the solution.
Step 1: Rearrange the equation to solve for molality:
\[
m = \frac{\Delta T_f}{i \times K_f} = \frac{2}{3 \times 1.86} = 0.358 \, \text{mol/kg}
\]
Step 2: Calculate the moles of CaCl$_2$:
\[
\text{moles of CaCl}_2 = m \times \text{mass of solvent} = 0.358 \times 0.5 = 0.179 \, \text{mol}
\]
Step 3: Calculate the mass of CaCl$_2$:
\[
\text{mass of CaCl}_2 = \text{moles} \times \text{molar mass} = 0.179 \times 111 = 19.89 \, \text{g}
\]
Thus, the mass of CaCl$_2$ required is 19.89 g.