Question:

Calculate the angular velocity of an electron in a hydrogen atom in the second orbit ($n = 2$).

Show Hint

N/A
  • \(5.15 \times 10^{15} \, \text{rad/s}\)
  • \(7.15 \times 10^{15} \, \text{rad/s}\)
  • \(8.15 \times 10^{15} \, \text{rad/s}\)
  • \(12.25 \times 10^{15} \, \text{rad/s}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

  • The speed of an electron in the \(n^{\text{th}}\) orbit of hydrogen is given by: \[ v = 2.188 \times 10^6 \times \frac{Z}{n} \text{ m/s} \]
  • Angular velocity is given by: \[ \omega = \frac{v_n}{r_n} \]
  • Using the expression: \[ \omega = \frac{2.18}{5.29} \times \frac{Z^2}{n^3} \times 10^{17} \]
  • For hydrogen, \(Z = 1\), and \(n = 2\), so: \[ \omega = \frac{2.18}{5.29} \times \frac{1^2}{2^3} \times 10^{17} \]
  • Simplifying: \[ \omega = 5.15 \times 10^{15} \text{ rad/s} \]
Was this answer helpful?
0
1