We need to find a number \( x \) such that:
\[
\left(- \frac{3}{2} \right)^{-3} \div x = \left( \frac{4}{27} \right)^{-2}
\]
Step 1: Simplify both sides.
\[
\left(- \frac{3}{2} \right)^{-3} = \left( - \frac{2}{3} \right)^{3} = - \frac{8}{27}
\]
\[
\left( \frac{4}{27} \right)^{-2} = \left( \frac{27}{4} \right)^{2} = \frac{729}{16}
\]
Step 2: Now, solve for \( x \):
\[
- \frac{8}{27} \div x = \frac{729}{16}
\]
\[
x = - \frac{8}{27} \times \frac{16}{729}
\]
\[
x = - \frac{128}{19683}
\]
Thus, the number that should divide is 19683.