By using properties of determinants, show that: \(\begin{vmatrix}1&x&x^2\\x^2&1&x\\x&x^2&1\end{vmatrix}\)=(1-x3)2
△=\(\begin{vmatrix}1&x&x^2\\x^2&1&x\\x&x^2&1\end{vmatrix}\)
Applying R1 → R1 + R2 + R3, we have:
△=\(\begin{vmatrix}1+x+x^2&1+x+x^2&1+x+x^2\\x^2&1&x\\x&x^2&1\end{vmatrix}\)
=(1+x+x2)\(\begin{vmatrix}1&1&1\\x^2&1&x\\x&x^2&1\end{vmatrix}\)
Applying C2 → C2 − C1 and C3 → C3 − C1, we have:
△=(1+x+x2)\(\begin{vmatrix}1&0&0\\x^2&1-x^2&x-x^2\\-x&x^2-x&1-x\end{vmatrix}\)
=(1+x+x2)(1-x)(1-x)I100 x2 1+x x x -x 1I
=(1-x3)(1-x)I100 x2 1+x x x -x 1I
Expanding along R1, we have:
△=(1-x3)(1-x)(1)I1+x x -x 1I
=(1-x3)(1-x)(1+x+x2)
=(1-x3)(1-x3)
=(1-x3)2
Hence, the given result is proved.
What is the Planning Process?
Read More: Properties of Determinants