By using properties of determinants, show that: \(\begin{vmatrix}1&x&x^2\\x^2&1&x\\x&x^2&1\end{vmatrix}\)=(1-x3)2
△=\(\begin{vmatrix}1&x&x^2\\x^2&1&x\\x&x^2&1\end{vmatrix}\)
Applying R1 → R1 + R2 + R3, we have:
△=\(\begin{vmatrix}1+x+x^2&1+x+x^2&1+x+x^2\\x^2&1&x\\x&x^2&1\end{vmatrix}\)
=(1+x+x2)\(\begin{vmatrix}1&1&1\\x^2&1&x\\x&x^2&1\end{vmatrix}\)
Applying C2 → C2 − C1 and C3 → C3 − C1, we have:
△=(1+x+x2)\(\begin{vmatrix}1&0&0\\x^2&1-x^2&x-x^2\\-x&x^2-x&1-x\end{vmatrix}\)
=(1+x+x2)(1-x)(1-x)I100 x2 1+x x x -x 1I
=(1-x3)(1-x)I100 x2 1+x x x -x 1I
Expanding along R1, we have:
△=(1-x3)(1-x)(1)I1+x x -x 1I
=(1-x3)(1-x)(1+x+x2)
=(1-x3)(1-x3)
=(1-x3)2
Hence, the given result is proved.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
Read More: Properties of Determinants