Step 1: Extract import values from the bar graph
2018: 30,\ 2019: 45,\ 2020: 40,\ 2021: 35,\ 2022: 50,\ 2023: 45,\ 2024: 48.
Step 2: Compute year-on-year falls
- 2020 vs 2019: fall \(=45-40=5\). Percentage fall \(=\tfrac{5}{45}\times100 \approx 11.1%\).
- 2021 vs 2020: fall \(=40-35=5\). Percentage fall \(=\tfrac{5}{40}\times100=12.5%\).
- 2023 vs 2022: fall \(=50-45=5\). Percentage fall \(=\tfrac{5}{50}\times100=10%\).
- 2024 vs 2023: increase}, not a fall.
Step 3: Conclusion
Among actual falls, the lowest % fall is \(10%\) in 2023. But since 2024 shows an increase} (no fall at all), its effective fall is the lowest (zero).
\[
\boxed{2024}
\]