The Bag of Words (BoW) model is a representation used in Natural Language Processing (NLP) to extract features from text. It represents text data in the form of a ”bag” of words, ignoring grammar and word order but keeping track of the frequency of words. This model is useful for text classification tasks, where each document is represented as a vector of word counts. NLP algorithms such as spam detection and sentiment analysis often use BoW for feature extraction.
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।