The Bag of Words (BoW) model is a representation used in Natural Language Processing (NLP) to extract features from text. It represents text data in the form of a ”bag” of words, ignoring grammar and word order but keeping track of the frequency of words. This model is useful for text classification tasks, where each document is represented as a vector of word counts. NLP algorithms such as spam detection and sentiment analysis often use BoW for feature extraction.
"ई काशी छोड़कर कहीं न जाएँ" बिस्मिल्ला खाँ के मन में काशी के प्रति विशेष अनुराग के क्या कारण थे ?
'संस्कृति' पाठ के आधार पर संस्कृति और असंस्कृति में अंतर बताइए।