Step 1: Find the derivative of the given expression
We are given the function \( f(x) = \tan^{-1}(\cos(\sqrt{x})) + \sec^{-1}(e^x) \). To find the derivative at \( x = \frac{\pi^2}{4} \), we need to differentiate each term of the function using standard derivative rules.
Step 2: Derivative of \( \tan^{-1}(\cos(\sqrt{x})) \)
Using the chain rule, the derivative of \( \tan^{-1}(u) \) is:
\[
\frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}
\]
Let \( u = \cos(\sqrt{x}) \), then:
\[
\frac{du}{dx} = -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}
\]
Thus, the derivative of the first term is:
\[
\frac{d}{dx} \tan^{-1}(\cos(\sqrt{x})) = \frac{1}{1 + \cos^2(\sqrt{x})} \cdot \left( -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \right)
\]
This simplifies to:
\[
\frac{-\sin(\sqrt{x})}{2\sqrt{x}(1 + \cos^2(\sqrt{x}))}
\]
Step 3: Derivative of \( \sec^{-1}(e^x) \)
Using the chain rule again, the derivative of \( \sec^{-1}(v) \) is:
\[
\frac{d}{dx} \sec^{-1}(v) = \frac{1}{|v| \sqrt{v^2 - 1}} \cdot \frac{dv}{dx}
\]
Let \( v = e^x \), then:
\[
\frac{dv}{dx} = e^x
\]
Thus, the derivative of the second term is:
\[
\frac{d}{dx} \sec^{-1}(e^x) = \frac{1}{e^x \sqrt{e^{2x} - 1}} \cdot e^x
\]
This simplifies to:
\[
\frac{1}{\sqrt{e^{2x} - 1}}
\]
Step 4: Combine the derivatives
The derivative of the entire function is:
\[
\frac{d}{dx} \left( \tan^{-1}(\cos(\sqrt{x})) + \sec^{-1}(e^x) \right) = \frac{-\sin(\sqrt{x})}{2\sqrt{x}(1 + \cos^2(\sqrt{x}))} + \frac{1}{\sqrt{e^{2x} - 1}}
\]
Step 5: Evaluate at \( x = \frac{\pi^2}{4} \)
At \( x = \frac{\pi^2}{4} \), we first calculate the necessary values:
- \( \cos(\sqrt{x}) = \cos\left(\frac{\pi}{2}\right) = 0 \)
- \( e^x = e^{\frac{\pi^2}{4}} \)
- \( \sin\left(\frac{\pi}{2}\right) = 1 \)
Thus, the derivative at \( x = \frac{\pi^2}{4} \) becomes:
\[
\frac{-0}{2\sqrt{\frac{\pi^2}{4}}(1 + 0)} + \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} = \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} - \frac{1}{\pi}
\]
Therefore, the answer is:
\( \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} - \frac{1}{\pi} \)