Step 1: Differentiate the given expression with respect to \( x \)
Let \( y = \tan^{-1}(\cos\sqrt{x}) + \sec^{-1}(e^x) \).
We want to find \( \frac{dy}{dx} \).
Using the chain rule, we have:
\[ \frac{dy}{dx} = \frac{d}{dx} \tan^{-1}(\cos\sqrt{x}) + \frac{d}{dx} \sec^{-1}(e^x) \]
\[ = \frac{1}{1 + (\cos\sqrt{x})^2} \cdot \frac{d}{dx} (\cos\sqrt{x}) + \frac{1}{|e^x|\sqrt{e^{2x} - 1}} \cdot \frac{d}{dx} (e^x) \]
\[ = \frac{1}{1 + \cos^2\sqrt{x}} \cdot (-\sin\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} + \frac{e^x}{e^x\sqrt{e^{2x} - 1}} \]
\[ = -\frac{\sin\sqrt{x}}{2\sqrt{x}(1 + \cos^2\sqrt{x})} + \frac{1}{\sqrt{e^{2x} - 1}} \]
Step 2: Evaluate the derivative at \( x = \frac{\pi^2}{4} \)
Substitute \( x = \frac{\pi^2}{4} \) into the derivative:
\[ \frac{dy}{dx} \Bigg|_{x = \frac{\pi^2}{4}} = -\frac{\sin\sqrt{\frac{\pi^2}{4}}}{2\sqrt{\frac{\pi^2}{4}}(1 + \cos^2\sqrt{\frac{\pi^2}{4}})} + \frac{1}{\sqrt{e^{2(\frac{\pi^2}{4})} - 1}} \]
\[ = -\frac{\sin\frac{\pi}{2}}{2(\frac{\pi}{2})(1 + \cos^2\frac{\pi}{2})} + \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} \]
\[ = -\frac{1}{\pi(1 + 0)} + \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} \]
\[ = -\frac{1}{\pi} + \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} \]
\[ = \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} - \frac{1}{\pi} \]
Therefore, the value of the given expression at \( x = \frac{\pi^2}{4} \) is \( \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} - \frac{1}{\pi} \), which matches option (A).