Slope of given line: \(y = \frac{4}{3}x + \frac{2}{3}\), so slope = \(\frac{4}{3}\)
Required slope of tangent = negative reciprocal = \(-\frac{3}{4}\)
Differentiate \( y^2 = 2x^3 \):
\[
2y \frac{dy}{dx} = 6x^2 \Rightarrow \frac{dy}{dx} = \frac{3x^2}{y}
\Rightarrow \frac{3x^2}{y} = -\frac{3}{4}
\Rightarrow x^2 = -\frac{y}{4}
\Rightarrow y = -4x^2
\]
Substitute in \( y^2 = 2x^3 \):
\[
( -4x^2 )^2 = 2x^3 \Rightarrow 16x^4 = 2x^3 \Rightarrow x = \frac{1}{8} \Rightarrow y = \pm \frac{1}{16}
\]