At T(K), the solubility products (Ksp) of AgCl, AgBr and AgI are:
- AgCl: \(1.8 \times 10^{-10}\)
- AgBr: \(5 \times 10^{-13}\)
- AgI: \(8.3 \times 10^{-17}\)
A 1L solution contains \(10^{-5}\) moles each of NaCl, NaBr and NaI (i.e., \(10^{-5}\) M of Cl⁻, Br⁻, and I⁻). The solution is titrated with \(10^{-6}\) M AgNO₃.
Step 1: Concept – Precipitation and Ionic Product:
A precipitate forms when the ionic product (IP = [Ag⁺][X⁻]) exceeds the solubility product (Ksp) for that salt.
To compare when each halide starts precipitating, we calculate the minimum [Ag⁺] required to start precipitation using:
\[
[Ag^+] = \frac{K_{sp}}{[X^-]}
\]
Step 2: Calculate [Ag⁺] required for precipitation of each halide:
- For AgCl:
\[
[Ag^+] = \frac{1.8 \times 10^{-10}}{10^{-5}} = 1.8 \times 10^{-5}
\]
- For AgBr:
\[
[Ag^+] = \frac{5 \times 10^{-13}}{10^{-5}} = 5 \times 10^{-8}
\]
- For AgI:
\[
[Ag^+] = \frac{8.3 \times 10^{-17}}{10^{-5}} = 8.3 \times 10^{-12}
\]
Step 3: Order of precipitation:
The halide that requires the least [Ag⁺] will precipitate first. So we compare:
- AgI precipitates first (requires \(8.3 \times 10^{-12}\) M Ag⁺)
- Then AgBr (requires \(5 \times 10^{-8}\) M Ag⁺)
- Finally AgCl (requires \(1.8 \times 10^{-5}\) M Ag⁺)
Final Answer:
\[
\boxed{\text{AgI, AgBr, AgCl}}
\]