The decomposition of \( {N}_2{O}_5(g) \) is a first-order reaction: \[ 2 \, {N}_2{O}_5(g) \rightarrow 4 \, {NO}_2(g) + {O}_2(g) \] Let the initial pressure of \( {N}_2{O}_5 \) be \( a \) atm. After time \( t \), let the pressure of \( {N}_2{O}_5 \) that has decomposed be \( x \) atm.
The total pressure at time \( t \) is given as \( p \) atm. The change in pressure due to the reaction is: \[ {N}_2{O}_5(g) \rightarrow 2 \, {NO}_2(g) + \frac{1}{2} \, {O}_2(g) \] Thus, the total pressure at time \( t \) is: \[ p = (a - x) + 2x + \frac{1}{2}x = a + \frac{3}{2}x \] Solving for \( x \): \[ x = \frac{2(p - a)}{3} \] The pressure of \( {N}_2{O}_5 \) at time \( t \) is: \[ a - x = a - \frac{2(p - a)}{3} = \frac{3a - 2p + 2a}{3} = \frac{5a - 2p}{3} \] For a first-order reaction, the rate constant \( k \) is given by: \[ k = \frac{1}{2} \ln \left( \frac{a}{a - x} \right) = \frac{1}{2} \ln \left( \frac{a}{\frac{5a - 2p}{3}} \right) = \frac{1}{2} \ln \left( \frac{3a}{5a - 2p} \right) \] considering the given options and the context, the correct answer is: \[ k = \frac{1}{2} \ln \left( \frac{3a}{5a - 2p} \right) \] Final Answer:
\( k = \frac{1}{2} \ln \left( \frac{3a}{5a - 2p} \right) \)
Observe the following reactions:
\( AB(g) + 25 H_2O(l) \rightarrow AB(H_2S{O_4}) \quad \Delta H = x \, {kJ/mol}^{-1} \)
\( AB(g) + 50 H_2O(l) \rightarrow AB(H_2SO_4) \quad \Delta H = y \, {kJ/mol}^{-1} \)
The enthalpy of dilution, \( \Delta H_{dil} \) in kJ/mol\(^{-1}\), is:
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: