\(\tan\alpha\) \(=\frac{5}{12}\)
\(\tan\beta\) \(=\frac{3}{4}\)
In triangle BAC,
tanα =\(\frac{AB}{AC}\) \(=\) \(\frac{5}{12}\) \(=\frac{h}{(x+192)}\)..................(1)
In Triangle DAB,
\(\tan\beta\) = \(\frac{AB}{AD} = \frac{3}{4} = \frac{h}{x}\)
x \(=\frac{4h}{3}\)
Using (ii) in (i)
\(\frac{5}{12}\) \(=\) \(\frac{h}{(192+\frac{4h}{3})}\)
On solving, we get
h = 180 metres.
Hence, the height of the tower is 180 metres. So, the correct option is (C) .