Step 1: Concept.
According to Anderson's theory, vertical stress ($\sigma_v$) corresponds to lithostatic stress:
\[
\sigma_v = \rho g h
\]
where $\rho$ = density, $g$ = gravity, $h$ = depth.
Step 2: Identify given stresses.
Maximum principal stress $\sigma_1 = 150$ MPa, minimum principal stress $\sigma_3 = 75$ MPa. For normal faulting, $\sigma_1 = \sigma_v$.
So,
\[
\sigma_v = 150 \, \text{MPa} = 150 \times 10^6 \, \text{Pa}
\]
Step 3: Calculate depth.
\[
\sigma_v = \rho g h \quad \Rightarrow \quad h = \frac{\sigma_v}{\rho g}
\]
\[
h = \frac{150 \times 10^6}{2700 \times 10} = \frac{150 \times 10^6}{27000} = 5555.5 \, \text{m}
\]
Step 4: Convert to km.
\[
h = 5.6 \, \text{km (approx.)}
\]
Final Answer: \[ \boxed{5.6 \, \text{km}} \]
