Let MCl be a sparingly soluble salt. Its dissolution equilibrium in water is:
MCl(s) $\rightleftharpoons$ M$^+$(aq) + Cl$^-$(aq)
The solubility product constant ($K_{sp}$) is given by:
$K_{sp} = [\text{M}^+][\text{Cl}^-]$
Given $K_{sp} = 1 \times 10^{-10}$ at $25^\circ\text{C}$.
We need to find the molar solubility ($s$) of MCl in a $0.1 \text{ M NaCl}$ solution.
NaCl is a strong electrolyte and dissociates completely: NaCl(aq) $\rightarrow$ Na$^+$(aq) + Cl$^-$(aq).
So, a $0.1 \text{ M NaCl}$ solution provides an initial concentration of Cl$^-$ ions: $[\text{Cl}^-]_{initial} = 0.1 \text{ M}$.
This is an example of the common ion effect.
Let $s$ be the molar solubility of MCl in the NaCl solution. This means that $s$ moles of MCl dissolve per liter of solution.
When $s$ moles/L of MCl dissolve, it produces $s$ moles/L of M$^+$ ions and $s$ moles/L of Cl$^-$ ions from MCl.
So, $[\text{M}^+] = s$.
The total concentration of Cl$^-$ ions in the solution will be the sum of Cl$^-$ from NaCl and Cl$^-$ from the dissolution of MCl:
$[\text{Cl}^-]_{total} = [\text{Cl}^-]_{initial} + [\text{Cl}^-]_{from MCl} = 0.1 + s$.
Substitute these concentrations into the $K_{sp}$ expression:
$K_{sp} = [\text{M}^+][\text{Cl}^-]_{total}$
$1 \times 10^{-10} = (s)(0.1 + s)$.
Since MCl is sparingly soluble, its solubility $s$ in the presence of a common ion (0.1 M Cl$^-$) will be very small.
Thus, we can assume $s \ll 0.1$.
So, $0.1 + s \approx 0.1$.
The equation becomes:
$1 \times 10^{-10} \approx (s)(0.1)$.
$1 \times 10^{-10} = 0.1s$.
Solve for $s$:
$s = \frac{1 \times 10^{-10}}{0.1} = \frac{1 \times 10^{-10}}{1 \times 10^{-1}} = 1 \times 10^{-10 - (-1)} = 1 \times 10^{-10+1} = 1 \times 10^{-9} \text{ M}$.
Let's check the approximation: $s = 10^{-9}$. Is $10^{-9} \ll 0.1$? Yes, $10^{-9}$ is much smaller than $10^{-1}$. So the approximation is valid.
The molar solubility of MCl in $0.1 \text{ M NaCl}$ solution is $1 \times 10^{-9} \text{ M}$.
This matches option (c).
\[ \boxed{10^{-9} \text{ M}} \]