The centrifugal acceleration \( a_c \) at latitude \( \theta \) is given by the formula:
\[
a_c = \omega^2 R \cos^2(\theta)
\]
where:
- \( \omega = 7.27 \times 10^{-5} \, \text{radians/s} \) is the angular velocity of the Earth,
- \( R = 6371 \, \text{km} = 6.371 \times 10^6 \, \text{m} \) is the radius of the Earth,
- \( \theta = 60^\circ \).
Substituting these values into the formula:
\[
a_c = (7.27 \times 10^{-5})^2 \times 6.371 \times 10^6 \times \cos^2(60^\circ)
\]
\[
a_c = 5.3 \times 10^{-9} \times 6.371 \times 10^6 \times \frac{1}{4}
\]
\[
a_c = 5.3 \times 10^{-9} \times 1.59275 \times 10^6 = 8.44 \times 10^{-3} \, \text{m/s}^2.
\]
Rounding off to one decimal place:
\[
a_c = \boxed{8.4 \times 10^{-3}} \, \text{m/s}^2.
\]