At the surface:
\[mg = 300 \, \text{N}\]
\[m = \frac{300}{g_s}\]
At depth \( \frac{R}{4} \):
\[g_d = g_s \left( 1 - \frac{d}{R} \right)\]
where \( d = \frac{R}{4} \).
\[g_d = g_s \left( 1 - \frac{R}{4R} \right) = g_s \cdot \frac{3}{4}\]
The weight at depth \( \frac{R}{4} \) is:
\[\text{Weight} = m \times g_d = m \times \frac{3 g_s}{4}\]
\[= \frac{3}{4} \times 300 = 225 \, \text{N}\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: