At the surface:
\[mg = 300 \, \text{N}\]
\[m = \frac{300}{g_s}\]
At depth \( \frac{R}{4} \):
\[g_d = g_s \left( 1 - \frac{d}{R} \right)\]
where \( d = \frac{R}{4} \).
\[g_d = g_s \left( 1 - \frac{R}{4R} \right) = g_s \cdot \frac{3}{4}\]
The weight at depth \( \frac{R}{4} \) is:
\[\text{Weight} = m \times g_d = m \times \frac{3 g_s}{4}\]
\[= \frac{3}{4} \times 300 = 225 \, \text{N}\]
Choose the correct set of reagents for the following conversion:
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):