At the surface:
\[mg = 300 \, \text{N}\]
\[m = \frac{300}{g_s}\]
At depth \( \frac{R}{4} \):
\[g_d = g_s \left( 1 - \frac{d}{R} \right)\]
where \( d = \frac{R}{4} \).
\[g_d = g_s \left( 1 - \frac{R}{4R} \right) = g_s \cdot \frac{3}{4}\]
The weight at depth \( \frac{R}{4} \) is:
\[\text{Weight} = m \times g_d = m \times \frac{3 g_s}{4}\]
\[= \frac{3}{4} \times 300 = 225 \, \text{N}\]
To find the weight of a body at a depth \( \frac{R}{4} \) beneath the Earth's surface, we must understand how gravitational force changes with depth inside the Earth.
Assuming the Earth is a sphere of uniform density, the gravitational force inside Earth at a depth \( d \) is given by the formula:
\(W_d = W_0 \left(1 - \frac{d}{R}\right)\)
Where:
Given:
Substitute into the formula:
\(W_d = 300 \left(1 - \frac{1}{4}\right) = 300 \left(\frac{3}{4}\right) = 225 \, \text{N}\)
Thus, the weight of the body at a depth of \( \frac{R}{4} \) under the surface of the Earth would be 225 N.
Therefore, the correct answer is 225 N.
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is: 