We know:
\[
\sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3
\]
Using identity:
\[
a^3 + b^3 = (a + b)^3 - 3ab(a + b)
\]
Since \(\sin^2 x + \cos^2 x = 1\), we get:
\[
\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x
= 1 - \dfrac{3}{4} \sin^2(2x)
\]
Now integrate:
\[
\int_0^{\frac{\pi}{2}} \left(1 - \dfrac{3}{4} \sin^2(2x)\right) dx
\]
Using:
\[
\int \sin^2(ax) dx = \frac{x}{2} - \frac{\sin(2ax)}{4a}
\]
We get a value between \(\frac{\pi}{8}\) and \(\frac{\pi}{2}\), so Assertion is correct.
Also, \(\sin^6 x + \cos^6 x\) is periodic, but with period \(\pi\), not \(\frac{\pi}{2}\), so R is true but not the correct reason.