\(\frac {v}{2\sqrt 2}\)
\(\frac v2\)
\(\frac v4\)
\(\frac {v}{\sqrt 2}\)
∵ Loss in Kinetic Energy = Gain in spring energy
\(⇒\frac 12mv^2×2=\frac 12kx_m^2\)
\(⇒2×\frac 14×v^2=2×x_m^2\)
\(⇒x_m=\sqrt {\frac {v^2}{4}}\)
\(⇒x_m=\frac v2\)
So, the correct option is (B): \(\frac v2\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Read More: Work and Energy