To determine the bond order of these diatomic species, we use Molecular Orbital Theory (MOT).
Bond Order = $\frac{1}{2} (N_b - N_a)$, where $N_b$ is the number of electrons in bonding molecular orbitals and $N_a$ is the number of electrons in antibonding molecular orbitals.
Total number of valence electrons for each species (considering only valence shell for simplicity, or total electrons if using full MO diagram):
N (Atomic number 7): $1s^2 2s^2 2p^3$ (5 valence e$^-$)
O (Atomic number 8): $1s^2 2s^2 2p^4$ (6 valence e$^-$)
1. NO (I):
Total valence electrons = $5 (\text{N}) + 6 (\text{O}) = 11$.
(Or total electrons = $7+8=15$).
MO configuration for species with 14-16 total electrons (like N$_2$, O$_2$, NO) without $s-p$ mixing affecting order for $2p$ MOs:
$(\sigma_{2s})(\sigma^*_{2s})(\sigma_{2p})(\pi_{2p})^4(\pi^*_{2p})^1$. (Using valence electron count of 11).
Valence MO filling for 11 electrons:
$\sigma_{2s}$ (2e, bonding)
$\sigma^*_{2s}$ (2e, antibonding)
$\sigma_{2p_z}$ (2e, bonding)
$\pi_{2p_x}, \pi_{2p_y}$ (4e, bonding)
$\pi^*_{2p_x}, \pi^*_{2p_y}$ (1e, antibonding)
$N_b = 2(\sigma_{2s}) + 2(\sigma_{2p_z}) + 4(\pi_{2p}) = 8$. (Considering MOs from $2s, 2p$).
$N_a = 2(\sigma^*_{2s}) + 1(\pi^*_{2p}) = 3$.
Bond Order (NO) = $\frac{1}{2} (8 - 3) = \frac{5}{2} = 2.5$.
2. NO$^+$ (II):
Total valence electrons = $5 (\text{N}) + 6 (\text{O}) - 1 (\text{for + charge}) = 10$.
(Or total electrons = $15-1=14$). This is isoelectronic with N$_2$.
Valence MO filling for 10 electrons:
$\sigma_{2s}$ (2e)
$\sigma^*_{2s}$ (2e)
$\sigma_{2p_z}$ (2e)
$\pi_{2p_x}, \pi_{2p_y}$ (4e)
The $\pi^*_{2p}$ orbitals are empty.
$N_b = 2+2+4 = 8$.
$N_a = 2$.
Bond Order (NO$^+$) = $\frac{1}{2} (8 - 2) = \frac{6}{2} = 3.0$.
3. NO$^-$ (III):
Total valence electrons = $5 (\text{N}) + 6 (\text{O}) + 1 (\text{for - charge}) = 12$.
(Or total electrons = $15+1=16$). This is isoelectronic with O$_2$.
Valence MO filling for 12 electrons:
$\sigma_{2s}$ (2e)
$\sigma^*_{2s}$ (2e)
$\sigma_{2p_z}$ (2e)
$\pi_{2p_x}, \pi_{2p_y}$ (4e)
$\pi^*_{2p_x}, \pi^*_{2p_y}$ (2e, antibonding) (one in $\pi^*_{2p_x}$, one in $\pi^*_{2p_y}$ by Hund's rule)
$N_b = 2+2+4 = 8$.
$N_a = 2+2 = 4$.
Bond Order (NO$^-$) = $\frac{1}{2} (8 - 4) = \frac{4}{2} = 2.0$.
Summary of bond orders:
NO (I): 2.5
NO$^+$ (II): 3.0
NO$^-$ (III): 2.0
Decreasing order of bond orders:
NO$^+$ (3.0)>NO (2.5)>NO$^-$ (2.0)
So, (II)>(I)>(III).
This matches option (b).
\[ \boxed{\text{(II)>(I)>(III)}} \]