The conductivity of a compound in solution depends on the number of ions it dissociates into. The more dissociation, the higher the conductivity.
For the given complexes:
Thus, the order of conductivity is:
[Cr(NH3)3Cl3] < [Cr(NH3)5Cl]Cl2 < [Cr(NH3)6Cl3]
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The Crystal Field Theory (CFT) of coordination compounds is based on the effect of different crystal fields (provided by the ligands taken as point charges) on the degeneracy of d-orbital energies of the central metal atom/ion. The splitting of the d-orbitals provides different electronic arrangements in strong and weak crystal fields. In tetrahedral coordination entity formation, the d-orbital splitting is smaller as compared to the octahedral entity.
What is crystal field splitting energy?
The Crystal Field Theory (CFT) of coordination compounds is based on the effect of different crystal fields (provided by the ligands taken as point charges) on the degeneracy of d-orbital energies of the central metal atom/ion. The splitting of the d-orbitals provides different electronic arrangements in strong and weak crystal fields. In tetrahedral coordination entity formation, the d-orbital splitting is smaller as compared to the octahedral entity.
On the basis of CFT, explain why [Ti(H$_2$O)$_6$]Cl$_3$ complex is coloured? What happens on heating the complex [Ti(H$_2$O)$_6$]Cl$_3$? Give reason.
From the following information, calculate opening and closing inventory :