Step 1: Simplify the complex number.
\[
z = \frac{-1-3i}{2+i}
\]
Multiply numerator and denominator by conjugate \((2-i)\):
\[
z = \frac{(-1-3i)(2-i)}{(2+i)(2-i)}
\]
Step 2: Compute denominator.
\[
(2+i)(2-i)=4+1=5
\]
Step 3: Compute numerator.
\[
(-1-3i)(2-i)=(-1)(2) + (-1)(-i) + (-3i)(2) + (-3i)(-i)
\]
\[
= -2 + i -6i + 3i^2
\]
\[
= -2 -5i + 3(-1)
= -5 - 5i
\]
So:
\[
z = \frac{-5-5i}{5} = -1 - i
\]
Step 4: Find argument of \(-1-i\).
Point \((-1,-1)\) lies in third quadrant.
Reference angle = \(45^\circ\).
So argument =
\[
180^\circ + 45^\circ = 225^\circ
\]
Final Answer:
\[
\boxed{225^\circ}
\]