Area of the region bounded by $y=|x-1|$ and $y=1$ is
Updated On: Jul 6, 2022
$2$ s units
$1$ s units
$\frac{1}{2}$ s units
none of these
Hide Solution
Verified By Collegedunia
The Correct Option isB
Solution and Explanation
We have, $y = x - 1$, if $x - 1 \ge 0$$y = - x + 1$ , if $x - 1< 0$
Required area = area of shaded region
$A=\int\limits_{0}^{2}1 dx-\left[\int\limits_{0}^{1}\left(1-x\right)dx+\int\limits_{1}^{2}\left(x-1\right)dx\right]$$=\left[x\right]_{0}^{2}-\left[x-\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{2}}{2}-x\right]_{1}^{2}$$=2-\frac{1}{2}-\frac{1}{2}=1$ s unit