\(8.9\times 10^{-7}m\)
\(9\times 10^{-7}m\)
\(9.8\times 10^{-7}m\)
\(a \, \sin \, \theta = n \lambda\)
\(a = \frac{\lambda}{\sin \, \theta} \)
\(ω = 2 \theta\)
\(\theta = \frac{w}{2}=\frac {\pi}{4}\)
\(a=\frac {7000 \times 10^{-10}}{sin \frac \pi4}\)
\(a=\frac {7000 \times 10^{-10}}{\frac {1}{\sqrt 2}}\)
\(a=9.89 \times 10^{-7}\ m\)
So, the correct option is (D): \(9.89 \times 10^{-7}\ m\)
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.