This problem involves the escape velocity of gas molecules from a planet. We'll use the following concepts:
where:
To find the minimum temperature for escape, we equate the kinetic energy to the gravitational potential energy:
\[ \frac{1}{2}mv_e^2 = \frac{3}{2}kT \]Substitute the escape velocity formula and simplify:
\[ \frac{1}{2}m \left( \sqrt{\frac{2GM}{R}} \right)^2 = \frac{3}{2}kT \] \[ \frac{mGM}{R} = 3kT \]Since we have the acceleration due to gravity (\( g = \frac{GM}{R^2} \)), we can write:
\[ T = \frac{mgR}{3k} \]Now, plug in the given values:
\[ T = \frac{(0.69 \times 10^{-26} \, \text{kg}) \times (10 \, \text{m/s}^2) \times (18 \times 10^5 \, \text{m})}{3 \times 1.38 \times 10^{-23} \, \text{J/K}^{-1}} \] \[ T \approx 6 \times 10^3 \, \text{K} \]Therefore, the temperature \( T \) is approximately \( 6 \times 10^3 \) K.
The correct answer is (4) \( 6 \times 10^3 \) K.
An amount of ice of mass \( 10^{-3} \) kg and temperature \( -10^\circ C \) is transformed to vapor of temperature \( 110^\circ C \) by applying heat. The total amount of work required for this conversion is,
(Take, specific heat of ice = 2100 J kg\(^{-1}\) K\(^{-1}\),
specific heat of water = 4180 J kg\(^{-1}\) K\(^{-1}\),
specific heat of steam = 1920 J kg\(^{-1}\) K\(^{-1}\),
Latent heat of ice = \( 3.35 \times 10^5 \) J kg\(^{-1}\),
Latent heat of steam = \( 2.25 \times 10^6 \) J kg\(^{-1}\))