Fortification of food with iron is done using $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$. The mass in grams of the $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ required to achieve 12 ppm of iron in 150 kg of wheat is _______ (Nearest integer).} (Given : Molar mass of $\mathrm{Fe}, \mathrm{S}$ and O respectively are 56,32 and $16 \mathrm{~g} \mathrm{~mol}^{-1}$ )
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equals the total mass of the products, leading to the insight that the relations among quantities of reactants and products typically form a ratio of positive integers. This means that if the amounts of the separate reactants are known, then the amount of the product can be calculated. Conversely, if one reactant has a known quantity and the quantity of the products can be empirically determined, then the amount of the other reactants can also be calculated.
Stoichiometry helps us determine how much substance is needed or is present. Things that can be measured are;
The Stoichiometric coefficient of any given component is the number of molecules and/or formula units that participate in the reaction as written.
The mass of one mole of a substance in grams is called molar mass. The molar mass of one mole of a substance is numerically equal to the atomic/molecular formula mass.