We are given:
- Wavelength \( \lambda = 1.3 \, \mu m = 1.3 \times 10^{-6} \, \text{m} \)
- Speed of light \( c = 3 \times 10^8 \, \text{m/s} \)
- Bandwidth per user/channel = \( 20 \, \text{kHz} = 2 \times 10^4 \, \text{Hz} \)
First, calculate the frequency corresponding to the wavelength:
\[
f = \frac{c}{\lambda} = \frac{3 \times 10^8}{1.3 \times 10^{-6}} = 2.31 \times 10^{14} \, \text{Hz}
\]
Now, divide the total available frequency by the required frequency per user:
\[
\text{Number of subscribers} = \frac{2.31 \times 10^{14}}{2 \times 10^4} = 1.155 \times 10^{10}
\]
Rounding appropriately:
\[
\boxed{1.15 \times 10^{10}}
\]