Step 1: Understand the physical condition
The oil drop is stationary, so the electric force balances the gravitational force:
\[
qE = mg
\]
Step 2: Volume and mass of the oil drop
Radius of the drop: \( r = 1\, \mu m = 1 \times 10^{-6}\, m \)
Density: \( \rho = 1.26\, g/cm^3 = 1260\, kg/m^3 \)
Volume of a sphere: \( V = \frac{4}{3} \pi r^3 \)
\[
V = \frac{4}{3} \pi (1 \times 10^{-6})^3 = \frac{4}{3} \pi \times 10^{-18} \, m^3
\]
Mass: \( m = \rho \cdot V = 1260 \cdot \frac{4}{3} \pi \times 10^{-18} \approx 5.28 \times 10^{-15} \, kg \)
Step 3: Calculate the charge on the drop
\[
q = \frac{mg}{E} = \frac{5.28 \times 10^{-15} \cdot 10}{3.65 \times 10^4} \approx \frac{5.28 \times 10^{-14}}{3.65 \times 10^4} \approx 1.45 \times 10^{-18} \, C
\]
Step 4: Calculate number of excess electrons
Charge of one electron: \( e = 1.6 \times 10^{-19} \, C \)
\[
n = \frac{q}{e} = \frac{1.45 \times 10^{-18}}{1.6 \times 10^{-19}} \approx 9.06 \approx 9
\]
Final Answer: 9