For an isolated system:
\[
\Delta U = \Delta Q + \Delta W.
\]
\[
\text{Since it is an isolated system, } \Delta Q = 0.
\]
For a Monatomic Ideal Gas:
\[
\Delta U = \frac{0.3}{0.2} nR \Delta T.
\]
Using the ideal gas law:
\[
PV = nRT.
\]
Substitute \( P = 5 \times 10^5 \, \text{Pa}, V = 0.1 \, \text{m}^3, R = 400 \, \text{J/mol·K} \):
\[
n = \frac{5 \times 10^5 \times 0.1}{400} = 125.
\]
As the compartment moves to the right, the spring exerts a force towards the left, indicating that work is done on the system.
Force and Pressure Relations:
\[
F = -Rx, \quad P = \frac{F}{A} = -\frac{Rx}{A}.
\]
Work done (\(W\)) is given by:
\[
W = \int P \, dV.
\]
Substituting:
\[
W = \int -\frac{Rx}{A} \, dV.
\]
Since \( dV = A \, dx \):
\[
W = -\int \frac{R}{A} x \, A \, dx = -\frac{R}{A} \int x \, dx.
\]
\[
W = -\frac{R}{2} x^2 \Big|_{x_1}^{x_2}.
\]
Substituting the limits and values:
\[
W = -\frac{0.3}{2} \times (0.2)^2.
\]
\[
W = -0.03 \, \text{J}.
\]
Final Temperature Calculation:
Using the energy equation:
\[
\Delta U = W.
\]
Substitute:
\[
\frac{3}{2} nR (T_f - 400) = -\frac{0.3}{2} \times (0.2)^2.
\]
Simplify:
\[
\frac{3}{2} \times 125 \times 400 (T_f - 400) = -0.03.
\]
\[
\frac{3}{2} \times 5 \times 10^5 \times 0.1 \frac{(T_f - 400)}{R \times 400} = -0.03.
\]
Solve for \( T_f \):
\[
T_f = 399.9 \, \text{K}.
\]
Final Answer:
The final temperature is:
\[
T_f = 399.9 \, \text{K}.
\]