Step 1: Determine \(E(t)\). Areas of (i), (ii), (iii) are equal. Let the common height be \(a\) for rectangles (i) and (iii), and rectangle (ii) also has height \(a\). Total area of \(E(t)\) must be 1: \[ \int_0^\infty E(t)\,dt = 15a = 1 \;\;\Rightarrow\;\; a=\tfrac{1}{15}\ \mathrm{min^{-1}}. \] Hence: \[ E(t)= \begin{cases} \dfrac{2}{15}, & 5 \le t \le 10, \\[6pt] \dfrac{1}{15}, & 10 < t \le 15, \\[6pt] 0, & \text{otherwise}. \end{cases} \]
Step 2: Concentration for a fluid element (segregated model). For a 2nd-order batch element: \[ \frac{dC_A}{dt}=-kC_A^2 \;\Rightarrow\; C_A(t)=\frac{C_{A0}}{1+kC_{A0}t}. \] Here: \[ kC_{A0} = 0.2 \times 1.5 = 0.3\ \mathrm{min^{-1}}. \]
Step 3: Mixed effluent concentration. \[ C_{A,\text{out}}=\int_0^\infty C_A(t)\,E(t)\,dt = C_{A0}\!\left[\frac{2}{15}\!\int_{5}^{10}\!\frac{dt}{1+0.3t}+\frac{1}{15}\!\int_{10}^{15}\!\frac{dt}{1+0.3t}\right]. \] Using: \[ \int \frac{dt}{1+0.3t} = \frac{1}{0.3}\ln(1+0.3t), \] we get: \[ \frac{C_{A,\text{out}}}{C_{A0}} = \frac{4}{9}\ln(1.6)+\frac{2}{9}\ln(1.375)\approx 0.2797. \] Thus: \[ C_{A,\text{out}} \approx 1.5 \times 0.2797 = 0.4195\ \mathrm{mol\,L^{-1}}. \]
Step 4: Overall conversion. \[ X = 1 - \frac{C_{A,\text{out}}}{C_{A0}} \;\approx\; 1 - 0.2797 = 0.720. \]
Final Answer: \[ \boxed{X \;\approx\; 72\%} \]